
Homework 9

Nicholas Amoscato
naa46@pitt.edu

Josh Frey
jtf15@pitt.edu

September 18, 2013
CS 1510 Algorithm Design

1. Dynamic Programming Problem 6:

Given an n-sided polygon P = 〈v1, v2, . . . , vn〉 where the vertices have been numbered
sequentially in a clockwise order, let edge e = 〈v1, vn〉.

Note that by definition of triangulation, the minimal triangulation of P must include a
triangle with edge e. However, there are n−2 triangles {〈v1, v2, vn〉, 〈v1, v3, vn〉, . . . , 〈v1, vn−1, vn〉}
that can be constructed with e as an edge. These possibilities are described by the
inner for loop in the pseudocode below.

Also note that any of these triangles 〈v1, j, vn〉 (where v1 < j < vn) split the original
polygon into two smaller polygons P1 = 〈v1, v2, . . . , vj〉 and P2 = 〈vj , vj+1, . . . , vk〉.
These polygons each have their own minimal triangulation that will be computed in
a bottom-up fashion.

A dynamic programming algorithm will construct an n × n table t where the entry
t[i][k] is the cost of the minimal triangulation of polygon 〈vi, vi+1, . . . , vk−1, vk〉 con-
structed by the entries below and to the left of it. This is derived from the fact that
j > i and j < k. Specifically, each entry contains the sum of the perimeters of the
triangles included in the minimal triangulation.

Thus, the top right entry in the table t[1][n] contains the cost of the minimal trian-
gulation of our initial polygon.

1



1 · · · j · · · k · · · n

1
...

i → t[i][j]
... ↑
j
...
n

Table 1: Table constructed by the dynamic programming algorithm

Note that when j == i + 1, the “triangle” constructed is simply a line. Thus, the
perimeter of this is 0. This is our base case defined in the first for loop in the
pseudocode below.

Let c(x, y, z) be the perimeter of the triangle 〈x, y, z〉.
for i = 1 to n− 1 do

t[i][i + 1] = 0
end for
for i = n down to 1 do

for k = i + 2 to n do
t[i][k] =∞
for j = i + 1 to k − 1 do

w = t[i][j] + t[j][k] + c(i, j, k)
if w < t[i][k] then

t[i][k] = w
v[i][k] = j

end if
end for

end for
end for

Note that in addition to storing the actual cost of each subproblem in table t, we also
store the j value that produced the minimal triangulation in an additional table v.
This is used to determine the actual triangles involved in the minimal triangulation
after t has been constructed.

For example, with v[1][n] = j, we know that the triangle 〈1, j, n〉 is a part of the
minimal triangulation. Additionally, we are able to construct the two polygons split
by this choice P1 = 〈v1, v2, . . . , vj〉 and P2 = 〈vj , vj+1, . . . , vn〉. Each of these polygons

2



contains a triangle and two subsequently split polygons that are determined by the
value of v[1][j] and v[j][n] respectively. This process would continue until all n − 2
triangles have been defined.

2. Dynamic Programming Problem 8:

Let T be a tree with n vertices V = {v1, v2, . . . , vn} and integer weights on the edges.
Let ei,j = ej,i be the edge that connects vi to vj .

The shortest unconstrained simple path can be found by placing each vertex as the
root of a tree. If the root vetex knew the weight of the minimal path for all of its k
child subtrees, the problem would be relatively straightforward:

• Let em = min(e1, e2, . . . , ek) where ei is the edge that connects the root vertex
with the ith subtree.

• Let wm = min(w1, w2, wk) where wi = w(i) + ei and w(i) is the weight of the
ith subtree’s minimal path.

• If em < wm, the smallest path would simply be em. Otherwise, the smallest
path would be the smallest path of the mth subtree +em.

In order to recover the minimal path in the mth subtree, we must strengthen the
inductive hypothesis. Specifically, in addition to returning the weight of the minimal
path, each subtree must also return the edge connecting the root node to that subtree.

The algorithm described above provides a decent overview of a top-down (recur-
sive) implementation; however, this problem should be implemented as a bottom-up
dynamic programming algorithm in which the minimal path of the leaf nodes are
computed before traversing up the tree in a reversed breadth-first search fashion.

Let bfs(V ) return an array of the vertices in V ordered by level via a breadth-first
search.

for r = 1 to n do
bfs = bfs(V )
for i = n down to 1 do

if i 6= r and bfs[i] is only connected to one other vertex then
ssp[i] = 0
sspe[i] = weight of edge connecting vi

else
ssp[i] =∞, sspe[i] =∞
for each child vc of bfs[i] connected by ec do

ssp[i] = min(ssp[i], ec)
sspe[i] = min(sspe[i], bfs[vc] + ec)

end for

3



end if
end for

end for

To construct the minimal path, the root r that has the minimum ssp[1] should be
used as a starting point. The value of sspe[1] will then determine the appropriate
edge to traverse next. This process continues until sspe[i] equals an edge that has
already been traveled (it is no longer adventageous to continue).

4


