Homework 5

Nicholas Amoscato naa46@pitt.edu

> Josh Frey jtf15@pitt.edu

September 9, 2013 CS 1510 Algorithm Design

Problem 10: Minimize the total completion time of a set of jobs.

(a) **Theorem:** The *SJF* algorithm is incorrect.

Proof: Let J be a collection of two jobs $\{(0, 10), (5, 8)\}$ where each job J_i is a tuple (r_i, x_i) of non-negative integers specifying the release time and size of the job respectively.

According to SJF, the schedule is as follows: between time 0 and time 5, J_1 is the only job that is released; thus, it will run. At time 5, J_1 will be preempted for J_2 because $x_2 < x_1$. That is, the size of J_2 , 8, is less than the size of J_1 , 10. J_2 will run from time 5 to time 13. At time 13, J_2 will have completed, and J_1 will finish running between time 13 and time 18.

Thus, the total completion time $C = C_1 + C_2 = 18 + 13 = 31$.

However, the following schedule has a smaller completion time: J_1 runs between time 0 and time 10 (it does not get preempted at time 5). Then, J_2 runs between time 10 and time 18. The total completion time $C = C_1 + C_2 = 10 + 18 = 28$.

Therefore, SJF is clearly incorrect.

(b) **Theorem:** The greedy algorithm S correctly solves this problem.

Proof: Assume to reach a contradiction that S is not correct. Thus, there exists an input I on which S does not produce an optimal solution. Let the acceptable

output produced by S be S(I). That is, S(I) is a sequence of n time intervals $S(I) = \{j_{S1}, j_{S2}, \ldots, j_{Sn}\}$ where j_{Si} represents the job that is running at time i.

Let $O(I) = \{j_{O1}, j_{O2}, \ldots, j_{On}\}$ where j_{Oi} represents the job that is running during time *i*. Let this be the optimal solution that minimizes the completion time agrees with S(I) for the most number of steps.

Let j_k be the first time interval in which S and O select different jobs to be run.

Note that O(I) must run and complete j_{Sk} at some point after time k because it is feasible.

Consider the set O'(I) that is constructed from O(I) by swapping all occurences of j_{Ok} with j_{Sk} from time k and on.

That is, the first occurence of j_{Sk} in O(I) after time k is swapped with j_{Ok} at time k. The next occurence of j_{Sk} in O(I) is swapped with the next occurence of j_{Ok} . This process continues for the number of consecutive intervals in which S(I) runs j_{Sk} .

Note that the number of consecutive intervals in which S(I) runs j_{Sk} must be less than or equal to the number of occurences of j_{Ok} in O(I) by definition of the greedy algorithm.

Thus, O'(I) agrees with S(I) in at least one more step, forming a contradiction. Therefore, the algorithm S is correct.