
Homework 23

Nicholas Amoscato
naa46@pitt.edu

Josh Frey
jtf15@pitt.edu

October 25, 2013
CS 1510 Algorithm Design

1. Reduction Problem 16:

Let SATCNF be the decision version of the SAT-CNF problem that determines
whether or not a Boolean formula F in conjunctive normal form is satisfiable. Let
3COLOR be the decision version of the 3-coloring problem that determines whether
the graph G is a valid 3-coloring.

Theorem: If SATCNF has a polynomial time algorithm then 3COLOR has a
polynomial time algorithm.

Proof: In order to prove this theorem, we must show that 3COLOR ≤ SATCNF .
That is, we must derive a polynomial algorithm for 3COLOR that calls SATCNF .
This requires us to transform the input of 3COLOR (a graph G) into a Boolean
formula F in conjunctive normal form.

First, we realize that each vertex in G can be assigned one of three colors. Thus,

for each vertex vi ∈ G, create three variables v
(a)
i , v

(b)
i and v

(c)
i cooresponding to the

three possible colorings of vi. We create a clause that represents this vertex:

(v
(a)
i ∨ v

(b)
i ∨ v

(c)
i ) (1)

Note that this clause is true if at least one variable is true. However, in order to
accurately represent 3COLOR, this clause should only be true if exactly one variable
is true. This comes from the fact that each vertex in a graph can only be assigned
one color. Thus, we add a few more clauses that should be ANDed to clause (1):

1



(v̄
(a)
i ∨ v̄

(b)
i ) ∧ (v̄

(b)
i ∨ v̄

(c)
i ) ∧ (v̄

(a)
i ∨ v̄

(c)
i ) (2)

The only way (2) can be true is if exactly one of the variables v
(a)
i , v

(b)
i or v

(c)
i is true.

This takes care of each vertex individually; however, we must also account for adjacent
vertices. That is, a graph is only a valid 3-coloring if no pair of adjacent vertices are
colored the same color. Given two adjacent vertices vi and vj , this translates to
Boolean logic like so:

(v
(x)
i ∧ v

(x)
j ) = (v̄

(x)
i ∨ v̄

(x)
j ) (3)

where vertices vi and vj both are assigned color x.

Thus, for each pair of adjacent vertices vi and vj in G, the following clauses should
be ANDed to clauses (1) and (2):

(v̄
(a)
i ∨ v̄

(a)
j ) ∧ (v̄

(b)
i ∨ v̄

(b)
j ) ∧ (v̄

(c)
i ∨ v̄

(c)
j ) (4)

The only way (4) can be true is if no two adjacent vertices have the same color.
Otherwise, at least one of these clauses will be false.

In summary, the input G can be transformed to a CNF Boolean formula by creating
three variables for every vertex vi ∈ G. Each vertex vi is represented by four clauses,
and each pair of adjacent vertices vi and vj is represented by three additional clauses.
All of these clauses should be ANDed together:

F =

 ∧
vi∈G

(1)i ∧ (2)i

 ∧
 ∧

vi,vj∈G
(4)i,j

 (5)

Clearly this transformation can happen in polynomial time. And the output of
SATCNF (F ) will be true if and only if the graph G is a valid 3-coloring.

2. Reduction Problem 18:

Let HAMP be the Fixed Hamiltonian Path Problem that determines if there is a
simple path between two vertices x and y in an undirected graph G = (VG, EG) that
spans all the vertices in G. Let HAMC be the Hamiltonian Cycle Problem that
determines whether or not an undirected graph H = (VH , EH) has a Hamiltonian
cycle. A Hamiltonian cycle is a simple cycle that spans H.

2



Theorem: If the HAMP has a polynomial time algorithm then HAMC has a
polynomial time algorithm

Proof: In order to prove this theorem, we must show that HAMC ≤ HAMP .
That is, we must derive a polynomial algorithm for HAMC that calls HAMP . This
requires us to transform the input of HAMC (an undirected graph H) to the input
of HAMP (an undirected graph G, and two vertices x and y).

This transformation involves iterating through each edge e = (x, y) ∈ H where x
and y are the vertices that comprise this edge. Using these two vertices as input to
HAMP , we realize that if there exists a Fixed Hamiltonian path, then this edge e
can not exist in it. This follows from the definition of a Fixed Hamiltonian path;
specifically, given that x must be visited first, y must be visited last and no vertex
can be visited more than once, edge e will never be traveled. Otherwise, y would be
visited twice.

(Note that if the graph only contains two vertices x and y, edge e must be traveled.
However, this graph will always have a Hamiltonian cycle, so this edge case is not a
problem.)

The reduction is described in the pseudocode below:

problem HAMC(G)
H = G
for each e = (x, y) ∈ EH do . for each edge in H

if HAMP (H,x, y) then . if there is a path from x to y
return true . there exists a cycle with inclusion of e

end if
end for

Clearly if HAMP can be solved in polynomial time, this algorithm can be solved in
polynomial time.

3


