Homework 18

Nicholas Amoscato naa46@pitt.edu

> Josh Frey jtf15@pitt.edu

October 11, 2013 CS 1510 Algorithm Design

1. Dynamic Programming Problem 24:

The objective of this problem is to develop an algorithm that determines if one can partition a collection of n boxes B_1, \ldots, B_n into two disjoint sub-collections S_1 and S_2 of equal weight where the weight of each box x_k is an integer from 1 to some constant L inclusive. Let $|S_1|$ and $|S_2|$ be the cumulative weight of S_1 and S_2 respectively.

We derive a dynamic programming algorithm by constructing a binary tree that enumerates all possible sub-collections S_1 . For the purpose of this construction, we assume that all boxes exist in S_2 at the root of the tree; thus S_1 is empty. The tree is constructed level-by-level, iterating through the boxes B_1, \ldots, B_n sequentially. Each node at level k of the tree has two children: the left child adds B_{k+1} to S_1 and removes it from S_2 while the right child does not add B_{k+1} to S_1 (and it stays in S_2).

In its current form, the tree will have an exponential number of leaf nodes; thus, we introduce pruning rules as follows.

(a) First, it is important to note that as we construct the tree, $|S_1|$ will never decrease from level k to level k + 1. This comes from the fact that we are either (1) adding a box to S_1 or (2) not adding a box to S_1 . Thus, $|S_1|$ will either increase or stay the same.

With this said, if $|S_1|$ ever exceeds $|S_2|$ in a given node, the sub-collections enumerated in the node's subtrees will never be of equal weight. Therefore, we prune this node.

(b) If there are two nodes at the same level k in which the weights of S_1 are equivalent, arbitrarily prune one node. This comes from the fact that all remaining

boxes B_{k+1}, \ldots, B_n considered after level k will enumerate idential solutions.

With these pruning rules, we ensure that there are no more than $\frac{n \times L}{2}$ nodes on each of the *n* levels of the tree. That is, if all *n* boxes had the maximum weight of *L*, the cummulative sum of all of these boxes would be $n \times L$. However, by our first pruning rule, $|S_1|$ will never exceed $\frac{n \times L}{2}$. The second pruning rule ensures that there is at most one node for each unique cummulative sum $1, \ldots, \frac{n \times L}{2}$.

Let M[k, w] be the sub-collection that contains at most k of the first k boxes with a cumulative sum of w. We assume each entry of M is initially undefined. (Note that if we only need to decide whether or not a solution is feasible, $|S_2|$ could be stored in each table entry as opposed to the entire sub-collection.)

The dynamic programming algorithm is described in pseudocode below:

 $|S_2| = \sum_{i=1}^n x_i$ $M[1, x_1] = B_1$ \triangleright initialize weight of S_2 \triangleright there must be at least one box in S_1 for k = 1 to n do \triangleright for each level and box B_k $|S_2| = |S_2| - x_k$ for w = 1 to $\frac{n \times L}{2}$ do \triangleright update the weight of S_2 \triangleright for each possible cummulative weight if M[k, w] is defined then \triangleright if there is a sub-collection if $w + x_k \leq |S_2|$ then \triangleright first pruning rule $M[k+1, w+x_k] = M[k, w] + B_k$ \triangleright move B_k from S_2 to S_1 end if M[k+1, w] = M[k, w] \triangleright keep B_k in S_2 end if end for end for

Clearly the algorithm runs in $O(n^2L)$ time.

If a solution to this problem exists, it will be in the last level of the matrix M[n, w]. for w = 1 to $\frac{n \times L}{2}$ do \triangleright for each possible weight of S_1 if $w == \sum_{B_i \notin M[n,w]} x_i$ then \triangleright if $|S_1| == |S_2|$ solution exists with $S_1 = M[n, w]$ end if end for solution does not exist

2. Reduction Problem 1:

Theorem: If there is an $O(n^2)$ algorithm for multiplying two n by n lower triangle matrices then there is an $O(n^2)$ time algorithm for multiplying two arbitrary n by n matrices.

Proof: Let MM be the problem of multiplying two arbitrary n by n matrices. Let LTMM be the problem of multiplying two $n \times n$ lower triangle matrices. In order to prove the theorem we must show that $MM \leq LTMM$. If we prove this reduction is true, we will prove that there is an algorithm to solve MM that lacks only code for LTMM.

Thus, we define an $O(n^2)$ algorithm for MM where $n \times n$ input matrices A and B are transformed to $3n \times 3n$ lower triangle matrices C and D which will be used as input to LTMM. Note that the placement of A and B in C and D ensure that $A \times B$ will be in the bottom left of the resultling matrix.

problem MM(A, B) $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ $C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & A & 0 \end{bmatrix}$ $D = \begin{bmatrix} 0 & 0 & 0 \\ B & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ \triangleright create LTM from A in $O(n^2)$ \triangleright create LTM from B in $O(n^2)$ P = LTMM(C, D) \triangleright compute LTMM of $C \times D$ in $O(n^2)$ for i = 1 to n do \triangleright for each row for j = 1 to n do \triangleright for each column Q[i,j] = P[2n+i,j] \triangleright store bottom left of P in $O(n^2)$ end for end for return Q

As we can see, based on the transformation of input and transformation of outputs being from arbitrary matrices to lower triangle matrices being $O(n^2)$, if we are able to solve lower triangle matrix multiplication in $O(n^2)$ time, then matrix multiplication can be solved in $O(n^2)$ times.

3. Reduction Problem 4:

Theorem: If you can solve the minimum Steiner tree problem in linear time, then you can sort n numbers in linear time.

Proof: Let *Sort* be the algorithm for sorting *n* numbers x_1, \ldots, x_n by calling MST, which is the minimum Steiner tree problem. We show that $Sort \leq MST$ by tranforming our inputs and outputs as follows.

Let the *n* numbers used as input to *Sort* be transformed into *n* points on the Cartesian plane where each point has an x-value of 0 and a y-value of x_i .

Assuming MST returns n adjacency lists for each of the n points, we start at the adjacency list for the point a with the smallest y coordinate. This point is obviously

the lowest point on the Cartesian plane, and it will only be connected to one point b, the point directly above it (which has a greater y-value). Point b will be connected to two points: obviously point a and a second point c that is directly above b.

Thus, traversing the adjacency lists from the point with the smallest y coordinate will output the points in order of increasing y coordinate.

problem Sort (x_1, \ldots, x_n) for i = 1 to n do $v_i = (0, x_i)$ \triangleright transform numbers to points in O(n)end for $T = MST(v_1, \ldots, v_n)$ \triangleright find minimum Steiner tree in O(n)(a, b) = adjacency list in T where point a has smallest y coordinate $\triangleright O(n)$ $\triangleright x_1 = y$ coordinate of point *a* $x_1 = a_y$ for i = 2 to n do $\triangleright O(n)$ $x_i = b_y$ $\triangleright x_i = y$ coordinate of point b above a $(a,b) \stackrel{\circ}{=} (b,c) \in T \mid c \neq a$ \triangleright find point *c* above *b* end for return x_1, \ldots, x_n

Clearly the above algorithm shows that $Sort \leq MST$ in linear time.